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Abstract— Memory based structures are well-suited for many 
digital signal processing (DSP) applications, which involve 
multiplication with a fixed set of coefficients. Memory-based 
structures are more regular compared with the multiply-
accumulate Structures and have many other advantages of less 
area and reduced latency implementation since the memory-
access-time is much shorter than the usual multiplication-time 
compared to the conventional multipliers. Distributed arithmetic 
(DA)-based computation is popular for its potential for efficient 
memory-based implementation of finite impulse response (FIR) 
filter. In this paper, however, we show that the look-up-table 
(LUT)-multiplier-based approach, where the memory elements 
store all the possible values of products of the filter coefficients 
could be an area-efficient alternative to DA-based design of FIR 
filter with the same throughput of implementation. By operand 
and inner-product decompositions, respectively, we have 
designed the conventional LUT-multiplier-based and DA-based 
structures for FIR filter of equivalent throughput, where the 
LUT-multiplier-based design involves nearly the same memory 
and the same number of adders, and less number of input 
register at the cost of slightly higher adder-widths than the other. 
Moreover, we present new approach to LUT-based 
multiplication, which could be used to reduce the memory size to 
half of the conventional LUT-based multiplication. Besides, we 
present a modified transposed form FIR filter, where a single 
segmented memory-core with only one pair of decoders are used 
to minimize the combinational area. We have implemented the 
FIR filter using proposed LUT-multiplier and LUT-multiplier 
based transposed form FIR filter both of order four using Xilinx 
tool in VHDL. 
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I. INTRODUCTION 

Finite-Impulse response (FIR) digital filter is widely used 
as a basic tool in various signal and image processing 
applications [1]. Many applications in digital communication, 
speech processing, seismic signal processing and several other 
areas require large order FIR filters [2]. Since the number of  
multiply-accumulate (MAC) operations required per filter 
output increases linearly with the filter order; real-time 
implementation of these filters of large orders is a challenging 
task. Therefore, several attempts have been made and 
continued to develop low-complexity dedicated VLSI systems 
for these filters [3]-[5]. 

II. MEMORY-BASED STRUCTURES 

    In this paper, we use the phrase “memory-based structures” 
or “memory-based systems” for those systems where memory 
elements like RAM or ROM is used either as a part or whole 
of an arithmetic unit [10]. Memory-based structures  are more 
regular compared with the multiply-accumulate structures; 

and have many other advantages, e.g., greater potential for 
high-throughput and reduced-latency implementation, (since 
the memory-access-time is much shorter than the usual  
multiplication-time) and are expected to have less dynamic 
power consumption due to less switching activities for 
memory-read operations compared to the conventional 
multipliers. Memory-based structures are well-suited for many 
digital signal processing (DSP) algorithms, which involve 
multiplication with a fixed set of coefficients. 
    There are two basic variants of memory-based techniques. 
One of them is based on distributed arithmetic (DA) for inner 
product computation [11]-[13], [14], [15] and the other is 
based on the computation of multiplication by look-up-table 
(LUT). In the LUT-multiplier-based approach, multiplications 
of input values with a fixed-coefficient are performed by an 
LUT consisting of all possible pre-computed product values 
corresponding to all possible values of input multiplicand, 
while in the DA-based approach, an LUT is used to store all 
possible values of inner-products of a fixed –N-point vector 
with any possible N-point bit-vector. If the inner-products are 
implemented in a straight-forward way, the memory-size of 
LUT-multiplier based implementation increases exponentially 
with the word length of input values, while that of the DA-
based approach increases exponentially with the inner-
product-length. Attempts have been made to reduce the 
memory-space in DA-based architectures using offset binary 
coding (OBC) [11] and group distributed technique [13]. A 
decomposition scheme is suggested in a recent paper [14] for 
reducing the memory-size of DA-based implementation of 
FIR filter. But, it is observed that the reduction of memory-
size achieved by such decompositions is accompanied by 
increase in latency as well as the number of adders and 
latches. 

III. LUT  DESIGN FOR MEMORY BASED MULTIPLICATION 

    The basic principle of memory-based multiplication is 
depicted in Fig. 1. Let A be a fixed coefficient and X be an 
input word to be multiplied with A. If we assume X to be an 
unsigned binary number of word-length L, there can be 2L 
possible values of X, and accordingly, there can be 2L possible 
values of product C=A.X . Therefore, for the conventional 
implementation of memory-based multiplication [15], a 
memory unit of 2L words is required to be used as look-up-
table consisting of pre-computed product values 
corresponding to all possible values of X. The product-word, 
(A.Xi)  for 0  Xi   2

L-1, is stored at the memory location 
whose address is the same Xi as the binary value of Xi , such 
that if L-bit binary value of Xi is used as address for the 
memory-unit, then the corresponding product value is read-out 
from the memory. 
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                     Fig.1. Conventional Memory-Based Multiplier 

IV. DISTRIBUTED ARITHMETIC ARCHITECTURE 

 
                Fig.2. Distributed arithmetic block diagram  
 

    DA is a bit-serial operation that implements a series of 
fixed-point MAC operations in a fixed number of steps, 
regardless of the number of terms to be calculated. One 
problem with original DA architecture is that its LUT size 
(2K-words) grows exponentially as the filter order N increase. 
    If the inner-products are implemented in a straight-forward 
way, the memory-size of DA based implementation increases 
exponentially with the inner-product-length. Attempts have 
been made to reduce the memory-space in DA-based 
architectures for reducing the memory-size of DA-based 
implementation of FIR filter. But, it is observed that the 
reduction of memory-size achieved by such decomposition is 
accompanied by increase in latency as well as the number of 
adders and latches.  

V. MEMORY-BASED FIR FILTER USING CONVENTIONAL LUT  

   The recursive computation of FIR filter output can also be 
understood from the FIR filter structure using conventional 
LUT-multiplier as shown in Fig. 3.1. Each multiplication node 
performs the multiplication of an input sample value with the 
absolute value of a filter coefficient. The AS node adds or 
subtracts its input from top with or from that of its input from 
the left when the corresponding filter coefficient is positive or 
negative, respectively. It may be noted here that each of the 
multiplication nodes performs multiplications of input 
samples with a fixed positive number. 
        This feature can be utilized to implement the 
multiplications by an LUT that stores the results of 
multiplications’ of all possible input values with the 
multiplying coefficient of a node as unsigned numbers. The 
multiplication of an L-bit unsigned input with W-bit 
magnitude part of fixed filter-weight, to be performed by each 
of the multiplication-nodes of the DFG, can be implemented 
conventionally by a dual-port memory consisting of words of 
(W+L) bit width. Each of the nodes of the DFG along with a 
neighbouring delay element can be mapped to an add-subtract 
(AS) cell. A fully pipelined structure for N-tap FIR filter for 

input word length L=8 is derived accordingly from the DFG. 
It consists of N memory-units for conventional LUT-based 
multiplication, along with (N-1) AS cells and a delay register. 
All the 8 bits of current input sample x (n) are fed to all the 
LUT-multipliers in parallel as a pair of 4-bit addresses X1 and 
X2 and the structure of the LUT-multiplier is shown in Fig 3.2. 
 

 
 

Fig.3.1. Conventional LUT-multiplier-based structure of an n-tap FIR Filter 
for input-width L=8. 

 

                     Fig.3.2. Structure of each LUT-multiplier 

    It consists of a dual-port memory unit of size [16 x (W+4)] 
(consisting of 16 words of (W+4)-bit width) and a shift-add 
(SA) cell. The SA cell shifts its right-input to left by four bit-
locations and adds the shifted value with its other input to 
produce a (W+8)-bit output. The shift operation in the shift-
add cells is hardwired with the adders, so that no additional 
shifters are required. The outputs of the multipliers are fed to 
the pipeline of AS cells in parallel. Each AS cell performs 
exactly the same function as that of the AS node of the DFG. 
It consists of either an adder or a subtracter depending on 
whether the corresponding filter weight h(n) is positive or 
negative, respectively. Besides, each of the SA cells consists 
of a pipeline latch corresponding to the delays in the DFG of 
Fig 3.1.  

VI. MEMORY-BASED FIR FILTER USING PROPOSED LUT 

MULTIPLIER 

    The realization of digital FIR filter using proposed LUT 
based multiplier is done by using direct form realization 
structure of digital FIR filter. The equation, which defines the 
FIR filter with output sequence y[n] in terms of its input 
sequence x[n]: 
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    Where x[n] is the input signal, y[n] is the output signal, 
h[k] is the coefficients of FIR filter frequency response, and N 
is the filter order. 
 
A. Proposed LUT Design Based 4-Bit Multiplier 
    The proposed LUT-based multiplier for input word-size 
L=4 is shown in fig.4. It consists of a memory-array of eight 
words of (W+4)-bit width and a 3-to-8 line address decoder, 
along with a NOR-cell, a barrel-shifter, a 4-to-3 bit encoder to 
map the 4-bit input operand to 3-bit LUT-address, and a 
control circuit for generating the control-word for the barrel-
shifter, and the RESET signal for the NOR-cell. 
 

 
            

 Fig.4. Proposed LUT design based 4-bit multiplier 
  

 

        TABLE.1 LUT words and product values for input word length L=4 

    Although 2L possible values of X correspond to 2L possible 
values of C=A.X, recently we have shown that only (2L/2) 
words corresponding to the odd multiples of A may only be 
stored in the LUT [16]. One of the possible product words is 
zero, while all the rest (2L/2)-1 are even multiples of A which 
could be derived by left-shift operations of one of the odd 
multiples of A. We illustrate this in Table I for L=4. At eight 
memory locations, eight odd multiples A x (2i+1) are stored 
as Pi for i=0, 1, 2… 7. The even multiples 2A, 4A and 8A are 

derived by left-shift operations of A. Similarly, 6A and 12A 
are derived by left-shifting 3A, while 10A and 14A are 
derived by left-shifting 5A and 7A, respectively. The address 
X= (0000) corresponds to (A.X) =0, which can be obtained by 
resetting the LUT output. For an input multiplicand of word-
size L similarly, only (2L/2) odd multiple values need to be 
stored in the memory-core of the LUT, while the other (2L/2-
1) non-zero values could be derived by left-shift operations of 
the stored values. Based on the above, an LUT for the 
multiplication of an L-bit input with W-bit coefficient is 
designed by the following strategy:  
•A memory-unit of (2L/2) words of (W+L)-bit width is used to 

store all the odd multiples of A. 
• A barrel-shifter for producing a maximum of (L-1) left shifts 

is used to derive all the even multiples of A. 
• The L-bit input word is mapped to (L-1)-bit LUT-address by 

an encoder. 
•The control-bits for the barrel-shifter are derived by a 

control-circuit to perform the necessary shifts of the LUT 
output. Besides, a RESET signal is generated by the same 
control circuit to reset the LUT output when X=0. 

 
1) 4-to-3 bits input encoder: 

 

Fig.4.1. 4-to-3 bits input encoder. 
 

     The 4-to-3 bit input encoder is shown in Fig.4.1. It receives 
a four-bit input word and maps that onto the three-bit address 
word, according to the logical relations 
 
 

 
     The decoder takes the 3-bit address from the input encoder, 
and generates 8 word-select signals, to select the referenced-
word from the memory-array. From Table 1 we find that the 
LUT output is required to be shifted through 1 location to left 
when the input operand is one of the values 

  
Two left-shifts are required if is either (0 1 0 0) or (1 1 0 0). 
Only when the input word X= (1 0 0 0), three shifts are 
required. For all other possible input operands, no shifts are 
required. Since the maximum number of left-shifts required on 
the stored-word is three, a two-stage logarithmic barrel-shifter 
is adequate to perform the necessary left-shift operations. 
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2) Control circuit: 
   The number of shifts required to be performed on the output 
of the LUT and the control-bits s0 and s1 for different values of 
X are shown in Table I. The control circuit shown in Fig.4.2 
accordingly generates the control-bits given by  

 

 
 

Fig.4.2. Control circuit 

 
The input X= (0 0 0 0) corresponds to multiplication by X=0 
which results in the product value equal to 0. Therefore, when 
the input operand word X= (0 0 0 0), the output of the LUT is 
required to be reset. 
 
3) Structure of the NOR-cell: 

 
                                Fig.4.3. Structure of the NOR-cell. 

 
    The RESET bit is fed as one of the inputs of all those NOR 
gates, and the other input lines of (W+4) NOR gates of NOR 
cell are fed with (W+4) bits of LUT output in parallel. When 
X= (0 0 0 0), the control circuit in Fig.4.2, generates an active-
high RESET according to the logic expression. 

                 
 
4) Two-stage logarithmic barrel-shifter: 

 
             Fig.4.4. Two-stage logarithmic barrel-shifter for W=4 
 

    A logarithmic barrel-shifter for W=L=4 is shown in Fig4.4. 
It consists of two stages of 2-to-1 line bit-level multiplexors 
with inverted output, where each of the two stages involves 

(W+4) number of 2-input AND-OR-INVERT (AOI) gates. 
The control-bits  and are fed to the AOI 
gates of stage-1 and stage-2 of the barrel-shifter, respectively. 
Since each stage of the AOI gates perform inverted 
multiplexing, after two stages of inverted multiplexing, 
outputs with desired number of shifts are produced by the 
barrel-shifter in (the usual) un-inverted form. 
           
B. Memory-Based Multiplier Using Dual-Port Memory-Array 

               
             Fig.5. Memory-based multiplier using dual-port memory-array. 
 

    Multiplication of an 8-bit input with a w -bit fixed 
coefficient can be performed through a pair of multiplications 
using a dual-port memory of 8 words (or two single-port 
memory units) along with a pair of decoders, encoders, NOR 
cells and barrel shifters as shown in Fig.5. The shift-adder 
performs left-shift operation of the output of the barrel-shifter 
corresponding to more significant half of input by four bit-
locations, and adds that to the output of the other barrel-shifter.  
C. Memory Based FIR Filter Using Proposed LUT-Multiplier 
     The memory-based structure of FIR filter (for 8-bit inputs) 
using the proposed LUT design is shown in Fig. 6.1. It differs 
from that of the conventional memory-based structure of FIR 
filter of Fig. 3.1 in two design aspects. 
1) The conventional LUT-multiplier is replaced by proposed 
odd-multiple-storage LUT, so that the multiplication by an L-
bit word could be implemented by (2L/2)/2 words in the LUT 
in the dual-port memory. 
2) Since the same pair of address words X1 and X2 are used 
by all the N LUT-multipliers in Fig. 3.1, only one memory 
module with segments could be used instead of N modules. If 
all the multiplications are implemented by a single memory 
module, the hardware complexity (used in Fig.3.1) could be 
eliminated. 

 
Fig.6.1. Structure of N th order FIR filter using proposed LUT-multiplier. 
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       Fig.6.2.The dual-port segmented memory core for the Nth order FIR filter. 

    As shown in Fig.6.1 the proposed structure of FIR filter 
consists of a single memory-module, and an array of N shift-
add (SA) cells, (N-1) AS cells and a delay register. The 
structure of memory module of Fig.6.1 is similar to that of Fig. 
5. Like the structure of Fig.5, it consists of a pair of 4-to-3 bit 
encoders and control circuits and a pair of 3-to-8 line decoders 
to generate the necessary control signals and word select 
signals for the dual-port memory core.  
     A pair of 4-bit sub-words X1 and X2 are derived from the 
input sample x(n) and fed to the pair of 4-to-3 bit encoders 
and control circuits, which produce  two sets of word-select 
signals (WS1 and WS2),a pair of control signals ((s01, s00) and 
(s11, s10)) , and two reset signals. All these signals are fed to 
the dual-port memory-core of [8 x (W+4)] size as shown in 
Fig.6.1. N segments of the memory-core then produce N pairs 
of corresponding output, those are fed subsequently to the 
pairs of barrel-shifters through the 2N NOR cells. The array of 
N pairs of barrel-shifters thus produce N pairs of output 
(h(i).X1, h(i).X2)  for  The structure and 
function of the NOR cells and the barrel-shifters are the same 
as those discussed. The structures and functions of the SA 
cells and AS cells are the same as those of Fig.3.1 for the 
structure of conventional LUT-multiplier-based FIR filter.  

VII. LUT-MULTIPLIER-BASED FIR FILTER STRUCTURE 

BY TRANSPOSED FORM REALIZATION 

    We find that instead of direct-form realization, transposed 
form realization of FIR filter is more efficient for the LUT-
multiplier-based implementation. In the transposed form, a 
single segmented-memory core could be used instead of 
separate memory modules for individual multiplications in 
order to avoid the use of individual decoders for each of those 
separate modules. 

  
Fig.7. LUT-multiplier-based structures of an N-tap FIR filter by transposed   

form realization using segmented memory-core. 
 

    Since the same pair of address words X1 and X2 are used 
by all the LUT-multipliers in Fig.3.1, only one memory 
module with segments could be used instead of independent 
memory modules. 
     A conventional LUT-multiplier-based structure of an N-tap 
FIR filter using segmented memory-core is shown in Fig.7. It 
consists of dual-port segmented memory-core of size [16 x 
(W+4)] x N, which consists of N segments of size [16 x 
(W+4)]. The structure of Fig.7, involves only one pair of 4-to-
16 lines decoders to receive an 8-bit input sample in each 
cycle, and to provide a pair of 16-bit word select signals WS1 
and WS2 to the segmented memory core. The latency and 
throughput per cycle of this structure are the same as that of 
fig 6.1. 

                              VIII. RESULTS 
    We have implemented the FIR filter using proposed LUT-
multiplier and LUT-multiplier based transposed form FIR 
filter both of order four using Xilinx tool and we have 
presented the output for each order upto four in the simulated 
results. 

 
Fig.8.Simulation results of Proposed Four bit LUT multiplier 

 

 
Fig.9.Simulation results of FIR filter using Proposed LUT multiplier 
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Fig.10.Simulation results of transposed form FIR filter using LUT multiplier 

IX. CONCLUSION 

    The proposed LUT-multiplier-based design of FIR filter is 
more efficient than the previous DA and Conventional LUT 
based design of FIR filter  in terms of area complexity for a 
given throughput and lower latency of implementation.   
Finally it is proved to be a low-complexity dedicated VLSI 
system for filters. Therefore LUT multipliers could be used 
high speed hardware implementation of digital filters and also 
for memory-based implementation of cyclic and linear 
convolutions, sinusoidal transforms, and inner-product 
Computation. The performance of memory based structures, 
with different adder and memory implementations could be 
studied in future for different DSP applications. 
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